Czasopisma Naukowe w Sieci (CNS)

A maximal inequality for stochastic integrals

  1. Mateusz Rapicki

Abstract

Assume that X is a càdlàg, real-valued martingale starting from zero, H is a predictable process with values in [−1; 1] and Y =∫HdX. This article contains the proofs of the following inequalities:
(i) If X has continuous paths, then
P(supt≥0 Yt≥ 1)≤ 2Esupt≥0Xt, where the constant 2 is the best possible.
(ii) If X is arbitrary, then
P(supt≥0 Yt≥ 1)≤ cEsupt≥0Xt, where c = 3.0446... is the unique positive number satisfying the equation 3c4 − 8c3 − 32 = 0. This constant is the best possible.

Pobierz artykuł

Ten artykuł

Probability and Mathematical Statistics

36, z. 2, 2016

Strony od 311 do 333

Inne artykuły autorów

Google Scholar

zamknij

Twoj koszyk (produkty: 0)

Brak produktów w koszyku

Twój koszyk Do kasy