Czasopisma Naukowe w Sieci (CNS)

Exponential rate of convergence independent of the dimension in a mean-field system of particles

  1. Bartłomiej Dyda
  2. Julian Tugaut

Abstract

EXPONENTIAL RATE OF CONVERGENCE INDEPENDENT OF THE DIMENSION IN A MEAN-FIELD SYSTEM OF PARTICLES

This article deals with a mean-field model. We consider a large number of particles interacting through their empirical law. We know that there is a unique invariant probability for this diffusion.We look at functional inequalities. In particular, we briefly show that the diffusion satisfies a Poincaré inequality. Then, we establish a so-called WJ-inequality, which is independent of the number of particles.

Pobierz artykuł

Ten artykuł

Probability and Mathematical Statistics

37, z. 1, 2017

Strony od 145 do 161

Inne artykuły autorów

Google Scholar

zamknij

Twoj koszyk (produkty: 0)

Brak produktów w koszyku

Twój koszyk Do kasy