Remarks on Pickands’ theorem

  1. Zbigniew Michna



In this article we present the Pickands theorem and his double sum method. We follow Piterbarg’s proof of this theorem. Since his proof relies on general lemmas, we present a complete proof of Pickands’ theorem using the Borell inequality and Slepian lemma. The original Pickands’ proof is rather complicated and is mixed with upcrossing probabilities for stationary Gaussian processes. We give a lower bound for Pickands constant. Moreover, we review equivalent definitions, simulations and bounds of Pickands constant.

Pobierz artykuł

Ten artykuł

Probability and Mathematical Statistics

37, z. 2, 2017

Strony od 373 do 393

Inne artykuły autorów

Google Scholar


Twoj koszyk (produkty: 0)

Brak produktów w koszyku

Twój koszyk Do kasy