Czasopisma Naukowe w Sieci (CNS)

Limiting spectral distributions of sums of products of non-Hermitian random matrices

  1. Holger Kösters
  2. Alexander Tikhomirov


For fixed l≥0 and m≥1, let Xn(0), Xn(1),..., Xn(l) be independent random n × n matrices with independent entries, let Fn(0) := Xn(0), (Xn(1))-1,..., (Xn(l))-1, and let Fn(1),..., Fn(m) be independent random matrices of the same form as Fn(0) . We show that as n → ∞, the matrices Fn(0) and m−(l+1)/2(Fn(1) +...+ Fn(m) ) have the same limiting eigenvalue distribution.
To obtain our results, we apply the general framework recently introduced in Götze, Kösters, and Tikhomirov (2015) to sums of products of independent random matrices and their inverses.We establish the universality of the limiting singular value and eigenvalue distributions, and we provide a closer description of the limiting distributions in terms of free probability theory.

Pobierz artykuł

Ten artykuł

Probability and Mathematical Statistics

38, z. 2, 2018

Strony od 359 do 384

Inne artykuły autorów

Google Scholar


Twoj koszyk (produkty: 0)

Brak produktów w koszyku

Twój koszyk Do kasy